8.1 Sine Law

<u>Chapter 8:Trigonometry of Acute</u> <u>Triangles</u>

8.1 - The Sine Law

The relationship between the sides and their opposite angles in any acute Δ ABC is:

Sine Law

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

DO IT NOW!!

Solve for 'x':

1)
$$\frac{1}{3} = \frac{x}{9}$$

$$\frac{9}{3} = \frac{3}{3}$$

$$\begin{array}{c} 2) \qquad \qquad \begin{array}{c} x = 3 \\ \frac{2}{6} \, \overline{\gg} \, \overline{\chi} \end{array}$$

How can we use what we know about the trig ratios for right angle triangles to help us solve for unknown sides and angles of acute triangles?

Sine Law

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

The sine law is derived by breaking up an acute triangle into 2 right angle triangles and then using trig ratios (SOHCAHTOA).

See the handout of the proof for the full explanation.

Sine Law: The ratio of each side to its opposite angle is equal!

Sine Law

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Note: Even though there are three parts to this equation, you only use two parts at a time. The choice of which two to use depends on what information is given.

8.1 Sine Law

May 22, 2012

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

The Sine Law can be used to find:

1. An unknown side when two angles and a side are known

2. An unknown angle if two sides and the angle opposite one of the known sides are known

Find Side Lengths Using the Sine Law

Find the length of side 'a'

Lake 46 - 54

Rember: We can use the sine law to find an unknown side when we know two angles and a side.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Sinsy Sinsy Sinso

$$Q(\sin 80) = 11(\sin 54)$$

$$Q = 11(\sin 54)$$

$$Q = 9.0$$

8.1 Sine Law May 22, 2012

Find an Angle Using the Sine Law

8.1 Sine Law May 22, 2012

Homework: Pg. 402 #1-7,9

Key Concepts

In an acute \triangle ABC, the sine law states that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- The sine law can be used to find
- an unknown side if two angles and a side are known
- an unknown angle if two sides and the angle opposite one of the known sides are known
- \blacksquare The sine law can also be written in the form

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$